Polymeric barrier materials are critical in contemporary industries for food, medicine, and chemical packaging. However, these materials, such as PET films, are impeded by the optimization of barrier properties by virtue of molecular design. Herein, a new methyl methacrylate-methyl acrylate-diallyl maleate-maleic acid (MMA-MAc-DAM-MA) was synthesized to tailor the surface properties of PET films for maximizing oxygen barrier properties. During the MMA-MAc-DAM-MA coating and curing process, the chemical structure evolutions of MMA-MAc-DAM-MA coatings were characterized, indicating that the cross-linking conversion and proportion of –COOH groups are critical for the oxygen barrier properties of coatings. The inherent –COOH groups are transformed into designed structures, including intramolecular anhydride, inter-chain anhydride and retained carboxylic acid. Therein, the inter-chain anhydride restraining the activity of coated polymer chain mainly contributes to enhanced barrier properties. The thermal properties of novel coatings were analyzed, revealing that the curing behavior is strongly dependent on the curing temperatures. The impacts of viscosity of the coating solution, coating velocity, and coating thickness on the oxygen permeability (Po2) of the coatings were investigated using a gas permeability tester to explore the optimum operating parameters during practical applications, which can reduce the Po2 of PET film by 47.8%. This work provides new insights on advanced coating materials for excellent barrier performance.