NAD+ and its derivatives NADH, NADP+, and NADPH are essential cofactors in redox reactions and electron transport pathways. NAD serves also as substrate for an extensive series of regulatory enzymes including cyclic ADP-ribose hydrolases, mono(ADP-ribosyl)transferases, poly(ADP-ribose) polymerases, and sirtuin deacetylases which are O-acetyl-ADP-ribosyltransferases. As a result of the numerous and diverse enzymes that utilize NAD as well as depend on its synthesis and concentration, significant interest has developed in its role in a variety of physiologic and pathologic processes, and therapeutic initiatives have focused both on augmenting its levels as well as inhibiting some of its pathways. In this article, we examine the biosynthesis of NAD, metabolic processes in which it is involved, and its role in aging, cancer, and other age-associated comorbidities including neurodegenerative, cardiovascular, and metabolic disorders. Therapeutic interventions to augment and/or inhibit these processes are also discussed. Impact statement NAD is a central metabolite connecting energy balance and organismal growth with genomic integrity and function. It is involved in the development of malignancy and has a regulatory role in the aging process. These processes are mediated by a diverse series of enzymes whose common focus is either NAD’s biosynthesis or its utilization as a redox cofactor or enzyme substrate. These enzymes include dehydrogenases, cyclic ADP-ribose hydrolases, mono(ADP-ribosyl)transferases, poly(ADP-ribose) polymerases, and sirtuin deacetylases. This article describes the manifold pathways that comprise NAD metabolism and promotes an increased awareness of how perturbations in these systems may be important in disease prevention and/or progression.