Nowadays, prostate cancer is one of the most common forms of malignant neoplasms in men all over the world. Against the background of increasing incidence, there is a high mortality rate from prostate cancer, which is associated with an inadequate treatment strategy. Such a high prevalence of prostate cancer requires the development of methods that can ensure early detection of the disease, improve the effectiveness of treatment, and predict the therapeutic effect. Under these circumstances, it becomes crucial to focus on the development of effective diagnostic and therapeutic approaches. Due to the development of molecular genetic methods, a large number of studies have been accumulated on the role of epigenetic regulation of gene activity in cancer development, since it is epigenetic changes that can be detected at the earliest stages of cancer development. The presence of epigenetic aberrations in tumor tissue and correlations with drug resistance suggest new therapeutic approaches. Detection of epigenetic alterations such as CpG island methylation, histone modification, and microRNAs as biomarkers will improve the diagnosis of the disease, and the use of these strategies as targets for therapy will allow for greater personalization of prostate cancer treatment.