Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
An important mechanism of gene expression regulation is the epigenetic modification of histones. The cofactors and substrates for these modifications are often intermediary metabolites, and it is becoming increasingly clear that the metabolic and nutritional state of cells can influence these marks. These connections between the balance of metabolites, histone modifications and downstream transcriptional changes comprise a metabolic signaling program that can enable cells to adapt to changes in nutrient availability. Beyond acetylation, there is evidence now that histones can be modified by other acyl groups. In this Cell Science at a Glance article and the accompanying poster, we focus on these histone acylation modifications and provide an overview of the players that govern these acylations and their connections with metabolism.
An important mechanism of gene expression regulation is the epigenetic modification of histones. The cofactors and substrates for these modifications are often intermediary metabolites, and it is becoming increasingly clear that the metabolic and nutritional state of cells can influence these marks. These connections between the balance of metabolites, histone modifications and downstream transcriptional changes comprise a metabolic signaling program that can enable cells to adapt to changes in nutrient availability. Beyond acetylation, there is evidence now that histones can be modified by other acyl groups. In this Cell Science at a Glance article and the accompanying poster, we focus on these histone acylation modifications and provide an overview of the players that govern these acylations and their connections with metabolism.
The sirtuin system consists of seven highly conserved regulatory enzymes responsible for metabolism, antioxidant protection, and cell cycle regulation. The great interest in sirtuins is associated with the potential impact on life extension. This article summarizes the latest research on the activity of sirtuins and their role in the aging process. The effects of compounds that modulate the activity of sirtuins were discussed, and in numerous studies, their effectiveness was demonstrated. Attention was paid to the role of a caloric restriction and the risks associated with the influence of careless sirtuin modulation on the organism. It has been shown that low modulators’ bioavailability/retention time is a crucial problem for optimal regulation of the studied pathways. Therefore, a detailed understanding of the modulator structure and potential reactivity with sirtuins in silico studies should precede in vitro and in vivo experiments. The latest achievements in nanobiotechnology make it possible to create promising molecules, but many of them remain in the sphere of plans and concepts. It seems that solving the mystery of longevity will have to wait for new scientific discoveries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.