Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Wearable and implantable devices play a crucial role in clinical diagnosis, disease treatment, and fundamental research on the body's electrophysiology and biochemical processes. Conducting polymers are emerging as promising solutions to surpass the limitations of traditional metal‐based electrodes, offering enhanced conformability, and stretchability. However, current microfabrication techniques of CP electrodes have a number of limitations. In this study, a novel wet‐printing technique is developed for the fabrication of highly stretchable poly(3,4‐ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) microelectrodes. The wet‐printing, conducted in a liquid coagulation bath, has the advantages of being non‐contact, easy and fast to perform, and capable of printing low‐viscosity inks. Wet‐printing of PEDOT:PSS lines with a width of ≈20 µm is demonstrated. By adding D‐sorbitol as a plasticizer, an ultra‐high stretchability of PEDOT:PSS electrodes, of more than 720% is achieved while the electrodes remained conductive and strain‐insensitive up to high strains. The use of PEDOT:PSS wet‐printed electrode arrays for the electrophysiological recording from the stomach is demonstrated. The stretchable electrodes conformed swell to the tissue and recorded comparable electrophysiological signals to Au‐plated electrodes in porcine and rodent animal models. The wet‐printing approach to fabricating flexible and stretchable electrode arrays using low‐viscosity, conducting inks holds promise for applications in conformable electronics.
Wearable and implantable devices play a crucial role in clinical diagnosis, disease treatment, and fundamental research on the body's electrophysiology and biochemical processes. Conducting polymers are emerging as promising solutions to surpass the limitations of traditional metal‐based electrodes, offering enhanced conformability, and stretchability. However, current microfabrication techniques of CP electrodes have a number of limitations. In this study, a novel wet‐printing technique is developed for the fabrication of highly stretchable poly(3,4‐ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) microelectrodes. The wet‐printing, conducted in a liquid coagulation bath, has the advantages of being non‐contact, easy and fast to perform, and capable of printing low‐viscosity inks. Wet‐printing of PEDOT:PSS lines with a width of ≈20 µm is demonstrated. By adding D‐sorbitol as a plasticizer, an ultra‐high stretchability of PEDOT:PSS electrodes, of more than 720% is achieved while the electrodes remained conductive and strain‐insensitive up to high strains. The use of PEDOT:PSS wet‐printed electrode arrays for the electrophysiological recording from the stomach is demonstrated. The stretchable electrodes conformed swell to the tissue and recorded comparable electrophysiological signals to Au‐plated electrodes in porcine and rodent animal models. The wet‐printing approach to fabricating flexible and stretchable electrode arrays using low‐viscosity, conducting inks holds promise for applications in conformable electronics.
The design of super‐antimicrobially active multipurpose nanocarriers as polymeric nanocomposites embedded with metal oxides with sustained drug release is beneficial in medical treatment for controlling inflammation and targeting a wide range of pathogenic microorganisms. Brilliant metal oxide nanoparticles (MOx) involving selenium dioxide, titanium dioxide, and vanadium pentoxide were well prepared in good yields, and their morphologies and structures were specified. Then they were embedded in copolymeric nanocomposites through in situ microemulsion polymerization of (E)‐2‐cyano‐N‐cyclohexyl‐3‐(dimethylamino)acrylamide (CHAA) with methyl methacrylate (MMA), dimethylaminoethyl methacrylate (DMAEMA), and acrylic acid (AA). In addition, ibuprofen was then loaded into the synthesized polymers and their nanocomposites to achieve high drug entrapment efficiency EE%, and its release behavior was studied in various simulated fluids. The produced drug‐loaded polymers and their nanocomposites were characterized using Fourier‐transform infrared spectroscopy (FT‐IR), transmission electron microscope (TEM), X‐ray diffraction (XRD), and thermogravimetric analysis (TG). Well‐defined nanospheres of polymeric‐metal oxide nanocomposites were generated in a size range of 50 nm, with ibuprofen loaded at a high encapsulation efficiency of approximately 97%. In vitro drug release was inspected for the polymer and its nanocomposites revealing that the presence of metal oxide nanoparticles resulted in prolonged and sustained release behavior for wound dressing. The antimicrobial study based on the zone of inhibition against various pathogenic microorganisms showed excellent activity against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Helicobacter pylori, and Candida albicans. These findings validate the potential of these nanocomposites to serve as a viable upcoming antimicrobial agent for the treatment of human ailments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.