Penggunaan energi listrik telah menjadi hal yang mutlak, seiring dengan berkembangnya perangkat elektronik. Namun dalam penggunaan energi listrik sering menimbulkan masalah seperti terjadi pemutusan arus listrik pada seluruh beban oleh pemutus sirkuit akibat beban lebih. Permasalahan tersebut sering terjadi pada penggunaan energi listrik skala rumah tinggal yang memiliki kapasitas daya maksimal 450 watt. Penelitian ini bertujuan untuk merealisasikan hardware dan software prototipe pengatur beban pintar, serta dilakukan pengujian untuk mengetahui keakuratan alat dalam pengukuran dan unjuk kerja alat dalam memproteksi beban. Dalam penelitian ini menggunakan metode eksperimen yang didalamnya terdapat beberapa langkah diantaranya adalah perancangan perangkat keras dan perangkat lunak, serta pengujian alat. Berdasarkan hasil pengujian yang di lakukan, hasil perhitungan persentase eror antara pengukuran alat rancangan dengan alat ukur berstandarisasi untuk beban resistif yaitu total daya beban sebesar 2,10%, tegangan kerja beban sebesar 0,44%, total arus beban sebesar 2,36%, dan total cos phi beban sebesar 0%. Sedangkan untuk beban induktif yaitu total daya beban sebesar 0,38%, tegangan kerja beban sebesar 0%, total arus beban sebesar 0%, dan total cos phi beban sebesar 1,03%. Adapun alat rancangan bekerja sesuai fungsinya dengan memutuskan beban yang bukan prioritas jika terjadi beban lebih dalam pemakaian energi listrik.The use of electrical energy has become an absolute necessity, along with the development of electronic devices. However, the use of electrical energy often causes problems such as a disconnection of electric current in the entire load by a circuit breaker due to overload. These problems often occur in the use of residential-scale electrical energy, which has a maximum power capacity of 450 watts. This study aimed to realize the prototype hardware and software for smart load control, as well as testing to determine the accuracy of the tool in measuring and the performance of the tool in protecting the load. It applied an experimental method in which there were several steps, including the design of hardware and software, as well as tool testing. Based on the results of the tests carried out, the results of the calculation of the percentage error between the measurement of the design tool and standardized measuring instruments for resistive loads, i.e., the total load power of 2.10%, working voltage load of 0.44%, total load current of 2.36%, and the total cos phi load of 0%. As for the inductive load, the total load power was 0.38%, the load working voltage was 0%, the total load current was 0%, and the total cos phi load was 1.03%. The design tool worked according to its function by deciding which load was not a priority if there was an overload in the use of electrical energy.