ABSTRACT:Femtosecond spectroscopy was used in combination with site-directed mutagenesis to study the influence of tyrosine M210 (YM210) on the primary electron transfer in the reaction center of Rhodobacter sphaeroides. The exchange of YM210 to phenylalanine caused the time constant of primary electron transfer to increase from 3.5 f 0.4 ps to 16 f 6 ps while the exchange to leucine increased the time constant even more to 22 f 8 ps. The results suggest that tyrosine M210 is important for the fast rate of the primary electron transfer.x e primary photochemical event during photosynthesis of bacteriochlorophyll-(Bchl-) containing organisms is a lightinduced charge separation within a transmembrane protein complex called the reaction center (RC). The crystal structures of RC's from Rhodopseudomonas (Rps.) viridis and Rhodobacter (Rb.) sphaeroides have been solved to high resolution [reviewed in Deisenhofer and Michel (1989), Chang et al. (1986), Tiede et al. (1988), andRees et al. (1989)l. The RC from Rb. sphaeroides contains three protein subunits referred to as L, M, and H, according to their respective mobilities in SDS-polyacrylamide gels. Associated with the L and M subunits are the cofactors, consisting of four Bchl a, two bacteriopheophytin (Bph) a, one atom of non-heme ferrous iron, two quinones (QA and Qe), and in some species one carotenoid [reviewed in Parson (1987) and Feher et al.' Financial support was from the Deutsche Forschungsgemeinschaft,