The anorexia that results from extended periods of cellular dehydration is an important physiological adaptation that limits the intake of osmolytes from food and helps maintain the integrity of fluid compartments. The ability to experimentally control both the development and reversal of anorexia, together with the understanding of underlying hormonal and neuropeptidergic signals, make dehydration (DE)-anorexia a powerful model for exploring the interactions of neural networks that stimulate and inhibit food intake. However, it is not known which meal parameters are affected by cellular dehydration to generate anorexia. Here we use continuous and high temporal resolution recording of food and fluid intake, together with a drinking-explicit method of meal pattern analysis to explore which meal parameters are modified during DE-anorexia. We find that the most important factor responsible for DE-anorexia is the failure to maintain feeding behavior once a meal has started, rather than the ability to initiate a meal, which remains virtually intact. This outcome is consistent with increased sensitivity to satiation signals and post-prandial satiety mechanisms. We also find that DE-anorexia significantly disrupts the temporal distribution of meals across the day so that the number of nocturnal meals gradually decreases while diurnal meal number increases. Surprisingly, once DE-anorexia is reversed this temporal redistribution is maintained for at least 4 days after normal food intake has resumed, which may allow increased daily food intake even after normal satiety mechanisms are reinstated. Therefore, DE-anorexia apparently develops from a selective targeting of those neural networks that control meal termination, whereas meal initiation mechanisms remain viable.