Mössbauer spectrometry gives electronic, magnetic, and structural information from within materials. A Mössbauer spectrum is an intensity of γ-ray absorption versus energy for a specific resonant nucleus such as 57 Fe or 119 Sn. For one nucleus to emit a γ-ray and a second nucleus to absorb it with efficiency, both nuclei must be embedded in solids, a phenomenon known as the "Mössbauer effect." Mössbauer spectrometry looks at materials from the "inside out," where "inside" refers to the resonant nucleus.Mössbauer spectra give quantitative information on "hyperfine interactions," which are small energies from the interaction between the nucleus and its neighboring electrons. The three hyperfine interactions originate from the electron density at the nucleus (the isomer shift), the gradient of the electric field (the nuclear quadrupole splitting), and the unpaired electron density at the nucleus (the hyperfine magnetic field). Over the years, methods have been refined for using these three hyperfine interactions to determine valence and spin at the resonant atom. Even when the hyperfine interactions are not easily interpreted, they can often be used reliably as "fingerprints" to identify the different local chemical environments of the resonant atom, usually with a good estimate of their fractional abundances. Mössbauer spectrometry is useful for quantitative phase analyses or determinations of the concentrations of resonant element in different phases, even when the phases are nanostructured or amorphous.Most Mössbauer spectra are acquired with simple laboratory equipment and a radioisotope source, but the recent development of synchrotron instrumentation now allow for measurements on small 10 µm samples, which may be exposed to extreme environments of pressure and temperature. Other capabilities include measurements of the vibrational spectra of the resonant atoms, and coherent scattering and diffraction of nuclear radiation. This article is not a review of the field, but an instructional reference that explains principles and practices, and gives the working materials scientist a basis for evaluating whether or not Mössbauer spectrometry may be useful for a research problem. A few representative materials studies are presented.