Small recombinant antibody molecules such as bispecific single-chain diabodies (scDb) possessing a molecular mass of ϳ55 kDa are rapidly cleared from circulation. We have recently extended the plasma half-life of scDb applying various strategies including PEGylation, N-glycosylation and fusion to an albumin-binding domain (ABD) from streptococcal protein G. Here, we further analyzed the influence of these modifications on the biodistribution of a scDb directed against carcinoembryonic antigen (CEA) and CD3 capable of retargeting T cells to CEAexpressing tumor cells. We show that a prolonged circulation time results in an increased accumulation in CEA ؉ tumors, which was most pronounced for scDb-ABD and PEGylated scDb. Interestingly, tumor accumulation of the scDb-ABD fusion protein was ϳ2-fold higher compared with PEGylated scDb, although both molecules exhibit similar plasma half-lives and similar affinities for CEA. Comparing half-lives in neonatal Fc receptor (FcRn) wild-type and FcRn heavy chain knock-out mice the contribution of the FcRn to the long plasma half-life of scDb-ABD was confirmed. The half-life of scDb-ABD was ϳ2-fold lower in the knock-out mice, while no differences were observed for PEGylated scDb. Binding of the scDb derivatives to target and effector cells was not or only marginally affected by the modifications, although, compared with scDb, a reduced cytotoxic activity was observed for scDb-ABD, which was further reduced in the presence of albumin. In summary, these findings demonstrate that the extended half-life of a bispecific scDb translates into improved accumulation in antigen-positive tumors but that modifications might also affect scDb-mediated cytotoxicity.Bispecific single-chain diabodies (scDb) 2 are recombinant molecules composed of the variable heavy and light chain domains of two antibodies connected by three linkers in the order V H A-V L B-V H B-V L A (1). These domains assemble into molecules with a compact structure and molecular masses of ϳ55 kDa. Bispecific single-chain diabodies have been developed for various applications including the retargeting of cytotoxic T lymphocytes to tumor cells for cellular cancer therapy (2).Although scDb are capable of efficiently retargeting effector cells to tumor cells the small size leads to their rapid elimination after i.v. injection. The terminal half-life of these molecules in mice is only in the range of 5-6 h, compared with several days for whole IgG molecules (3, 4). The fast clearance of such small molecules from circulation hampers therapeutic applications, e.g. requiring infusions or repeated injections to maintain a therapeutically effective dose over a prolonged period of time (5). For example, a bispecific tandem scFv directed against CD19 and CD3 (blinatumomab) having a similar size as an scDb molecule had to be given as an 8-week infusion (maximum dose 60 g/m 2 per day) in a clinical phase I trial for the treatment of B cell lymphoma patients (6).To extend plasma half-lives of therapeutic proteins and thus to improve ph...