Nonylphenol (NP) biodegradation in river sediment using Stenotrophomonas strain Y1 and Sphingobium strain Y2 were proved to be an effective strategy to remediate NP pollution in our earlier study. The purpose of this study is to investigate the influence of glucose addition on their ability to degrade NP in both liquid cultures and sediment microcosms. The shift in bacterial community structure and relative abundance of NP degraders in sediment microcosms were characterized using terminal restriction fragment length polymorphism analysis. The proportion of NP-degrading alkB and sMO genes was assessed using quantitative polymerase chain reaction (PCR) assay. The growth of Stenotrophomonas strain Y1 and its NP biodegradation efficiency were inhibited by glucose supplementation, while the relative abundance of alkB gene increased. However, NP degradation, as well as the growth of added degraders and proportion of sMO gene, was enhanced in the glucose-amended sediment microcosms inoculated with Sphingobium strain Y2. Moreover, external glucose addition altered bacterial community structures in bioaugmented sediment microcosms, depending on the level of glucose dosage.