The hydrogeological effects of longwall mines are vertically zoned. The heavily fractured strata immediately above the mine dewater, but they are typically overlain by a zone of low permeability that prevents shallower aquifers from draining to the mine. However, shallow bedrock aquifers experience head changes caused by fracturing during subsidence. New fracture void space takes up water, causing large head drops especially in confined aquifers. Increased fracture permeability affects heads because upper aquifers in high relief areas lose water through fractured aquitards to lower aquifers, and because the higher permeabilities lower hydraulic gradients and up-gradient heads, and increase downgradient discharge. In addition, a secondary drawdown spreads out laterally through transmissive aquifers from the potentiometric low in the subsiding zone. After undermining, water levels may recover due to closure of fractures and to recharge flowing back into the affected area. Studies at two active longwall mines in Pennsylvanian coal measures in Illinois support the conceptual model, with variations. Unconsolidated, unconfined aquifers were not significantly affected by mining. At one site, heads in a moderately transmissive sandstone declined due to mining but recovered fully afterwards. Increased permeability led to enhanced well yields, but water quality deteriorated, probably because of oxidation and mobilization of in situ sulphides during the unconfined and recovery phases. At the other site, heads in a poorly transmissive sandstone fell rapidly during subsidence and did not recover; hydrogeological responses varied at the site scale due to variations in bedrock-drift continuity. Predictions and monitoring schemes can be guided by the general conceptual model, but must consider local hydrogeological variations. Effects in shallow aquifers not in direct contact with the mine can be simulated using readily available flow models.