Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The Cretaceous Period stands out in Earth's geologic history by ubiquitous and sustained massive eruption of lava, forming several enormous igneous plateaus in the ocean basins worldwide. It has been proposed that the subaerial phases of Cretaceous oceanic plateau formation spurred the global environmental deterioration, yet this view is supported by patchy fossil and/or rock evidence for uplifting of the plateau summits above the sea level. Reported here is by far the most comprehensive case of Cretaceous plateau emergence at northern Shatsky Rise, Northwest Pacific, based on the integration of unique micropalaeontological and seismic evidence. From just above the flat-topped igneous edifice, recent Integrated Ocean Drilling Program (at Site U1346) recovered early Cretaceous (Hauterivian) ostracod and foraminiferal assemblages showing marked shallow-marine preferences. Most intriguing discovery is an ostracod taxon with well-developed eye tubercles, which serves as compelling palaeobiological evidence for a very shallow, euphotic setting. By linking the nearshore biofacies (<20 m water depth) to the basement topography undoubtedly shaped by subaerial weathering and/or erosion, it is obvious that northern Shatsky Rise was remarkably emergent during its final emplacement phase. We suggest that early Cretaceous surface environments might have been affected, at least in part, by Shatsky Rise subaerial volcanism.
The Cretaceous Period stands out in Earth's geologic history by ubiquitous and sustained massive eruption of lava, forming several enormous igneous plateaus in the ocean basins worldwide. It has been proposed that the subaerial phases of Cretaceous oceanic plateau formation spurred the global environmental deterioration, yet this view is supported by patchy fossil and/or rock evidence for uplifting of the plateau summits above the sea level. Reported here is by far the most comprehensive case of Cretaceous plateau emergence at northern Shatsky Rise, Northwest Pacific, based on the integration of unique micropalaeontological and seismic evidence. From just above the flat-topped igneous edifice, recent Integrated Ocean Drilling Program (at Site U1346) recovered early Cretaceous (Hauterivian) ostracod and foraminiferal assemblages showing marked shallow-marine preferences. Most intriguing discovery is an ostracod taxon with well-developed eye tubercles, which serves as compelling palaeobiological evidence for a very shallow, euphotic setting. By linking the nearshore biofacies (<20 m water depth) to the basement topography undoubtedly shaped by subaerial weathering and/or erosion, it is obvious that northern Shatsky Rise was remarkably emergent during its final emplacement phase. We suggest that early Cretaceous surface environments might have been affected, at least in part, by Shatsky Rise subaerial volcanism.
This paper presents alteration mineralogy of basalts from Sites U1346 and U1349 drilled during Integrated Ocean Drilling Program (IODP) Expedition 324 on Shatsky Rise oceanic plateau. These two sites are the more altered sites among the four basaltic sites drilled on the plateau and show the greatest variability in terms of alteration. X-ray diffraction (XRD) analyses were processed on nonoriented bulk rock powders and on oriented sections made after decarbonation of the <2 µm fraction of basalts, sampled at regular intervals from Holes U1346A and U1349A. These XRD analyses allow us to determine the nature and composition of clay minerals that predominantly replace primary mineralogy of the basalts and to evaluate the spatial variations in alteration conditions: lateral variations within the plateau and vertical variations within a single site. Alteration types differ between the two holes and include green alteration, brown alteration, and dark gray alteration in Hole U1346A, whereas Hole U1349A is characterized by red-brown alteration, a transition zone, and green alteration that differs significantly from that in Hole U1346A. Secondary mineral assemblages include smectites, calcite, kaolinite, illite, chlorite, zeolites, sulfides, Fe oxides (i.e., hematite), and Fe oxyhydroxides. These parageneses attest that basaltic rocks from the two sites were affected by low-to moderatetemperature alteration. Alteration at Shatsky Rise oceanic plateau is similar, although some differences occur, to that reported at oceanic plateaus (e.g., Ontong Java) and oceanic crust drilled during the Deep Sea Drilling Program and Ocean Drilling Program.
Abstract. Smear slide petrography has been a standard technique during scientific ocean drilling expeditions to characterize sediment composition and classify sediment types, but presentation of these percent estimates to track downcore trends in sediment composition has become less frequent over the past 2 decades. We compare semi-quantitative smear slide composition estimates to physical property (natural gamma radiation, NGR) and solid-phase geochemical (calcium carbonate, CaCO3 %) measurements from a range of marine depositional environments in the northern Indian Ocean (Bay of Bengal, Andaman Sea, Ninetyeast Ridge) collected during International Ocean Discovery Program (IODP) Expedition 353. We show that presenting smear slide estimates as percentages, rather than abundance categories, reveals similar downcore variation in composition to the more quantitative core analyses. Overall downcore trends in total calcareous components from smear slides (foraminifers + nannofossils + shell fragments + authigenic carbonate) follow similar downcore trends to samples measured by CaCO3 coulometry. Total lithogenic components (clay + mica + quartz + feldspars + lithic grains + vitric grains + glauconite + heavy minerals + iron oxides) and clay from smear slides track reasonably well with NGR measurements. Comparison of site averages of absolute percentages of total calcium carbonate from coulometry and total calcareous components from smear slide observations reveals an overestimation in carbonate percentages in smear slides (likely due in part to underestimation of the clay fraction), especially in sediments rich in smectite clays. Differences in sediment color between sites and settling of clay particles during slide preparation may contribute to this discrepancy. Although smear slide estimates range in accuracy depending on the training of the operator, we suggest that sedimentologists describing cores obtained during scientific drilling can use the percent estimates of sedimentary components in smear slides to identify trends and cyclicity in marine sediment records.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.