With the rapid development of modern electronic technology, the demand for the fundamental electronic devices of logic gate circuits has been growing increasingly in the past decades. Metallo-organic compounds with unique chemical structures and optical and electronic properties are an important type of organic semiconducting material for logic gate circuits. On the one hand, the excellent optoelectronic response characteristic of metalloorganic compounds allows them to achieve elementary logic functions. On the other hand, the structural diversity and adjustability of metallo-organic compounds could be utilized for simulating versatile high-speed, low-power logic operations by different types of stimuli. Up to now, various metalloorganic compounds such as metal complexes, organic−inorganic hybrid perovskites, and MOFs materials have been explored and applied in logic gate circuits with attractive application potentials in fields of wearable electronics, sensors, and artificial intelligence (AI), etc. In this review, we first introduce the basic concepts and classification of logic gate circuits and then focus on analyzing the application principles and advantages of metallo-organic compounds including metal complexes, organic−inorganic hybrid perovskites, and MOFs materials in logic gate circuits. Finally, we outline recent specific application cases of the above materials in logic gate circuits, demonstrating their potential in the design of high-performance logic gate circuits, and summarize their challenges and future development trends. This review aims to provide a comprehensive overview of the research and application of metallo-organic compounds in the field of logic gate circuits.