The pyruvate dehydrogenase multienzyme complexes are among the largest multifunctional catalytic machines in cells, catalyzing the production of acetyl CoA from pyruvate. We have previously reported the molecular architecture of an 11-MDa subcomplex comprising the 60-mer icosahedral dihydrolipoyl acetyltransferase (E2) decorated with 60 copies of the heterotetrameric (␣ 2  2 ) 153-kDa pyruvate decarboxylase (E1) from Bacillus stearothermophilus (Milne, J. L. S., Shi, D., Rosenthal, P. B., Sunshine, J. S., Domingo, G. J., Wu, X., Brooks, B. R., Perham, R. N., Henderson, R., and Subramaniam, S. (2002) EMBO J. 21, 5587-5598). An annular gap of ϳ90 Å separates the acetyltransferase catalytic domains of the E2 from an outer shell formed of E1 tetramers. Using cryoelectron microscopy, we present here a three-dimensional reconstruction of the E2 core decorated with 60 copies of the homodimeric 100-kDa dihydrolipoyl dehydrogenase (E3). The E2E3 complex has a similar annular gap of ϳ75 Å between the inner icosahedral assembly of acetyltransferase domains and the outer shell of E3 homodimers. Automated fitting of the E3 coordinates into the map suggests excellent correspondence between the density of the outer shell map and the positions of the two best fitting orientations of E3. As in the case of E1 in the E1E2 complex, the central 2-fold axis of the E3 homodimer is roughly oriented along the periphery of the shell, making the active sites of the enzyme accessible from the annular gap between the E2 core and the outer shell. The similarities in architecture of the E1E2 and E2E3 complexes indicate fundamental similarities in the mechanism of active site coupling involved in the two key stages requiring motion of the swinging lipoyl domain across the annular gap, namely the synthesis of acetyl CoA and regeneration of the dithiolane ring of the lipoyl domain.
The pyruvate dehydrogenase (PDH)2 multienzyme complexes play a central role in cellular metabolism, catalyzing the oxidative decarboxylation of pyruvate to acetyl CoA, to link glycolysis and the tricarboxylic acid cycle. Of key medical importance in several metabolic disorders (1, 2), the chemistry of this multicomponent enzyme assembly has been extensively studied (3-5). Detailed structures of individual enzymes or their subdomains have been elucidated using x-ray crystallographic and NMR techniques (Ref. 5 and references therein and Refs. 6 and 7), whereas cryoelectron microscopic analyses have begun to illuminate the overall molecular architecture of PDH complexes from eukaryotes (8 -11) and bacteria (12-14). These systems are ideal paradigms for the structural study of highly dynamic macromolecular machines because they mediate efficient transport of reaction intermediates between the active sites of component enzymes that can be spatially separated by as much as 100 Å (10, 14).PDH complexes based on icosahedral symmetry are among the largest of cellular machines and are found in the mitochondria of eukaryotes and in Gram-positive bacteria such as Bacillus stearo...