The binding energy spectra and electron momentum spectra of eight stable guanine tautomers are calculated in the complete valence space. The present results show that the canonical keto (C=O) guanine N(9)H tautomer (GU1) possesses the largest dipole moment, molecular electronic spatial extent, molecular hardness value, and the minimum first vertical ionization potential (VIP). Valence orbital profile investigations find that several orbitals remain almost unchanged during tautomerization, such as frontier highest occupied molecular orbital 39a and 18a. Several orbitals with interchanged order and inverse direction in charge spatial orientations are also detected. Outer valence orbitals (with smaller VIPs) show more complex orbital shapes in the momentum space than those of inner ones (larger VIPs) due mainly to the relatively strong inter-orbital interaction and delocalized electronic distributions. Proton rotation along C–O(H) and C–N(H) axes within hexagonal ring causes smaller influence to orbital profiles than those of proton migration within pentagonal and/or hexagonal rings. Orbital variation trends between enol (GU3–GU5) and keto (GU1, GU2, GU6–GU8) tautomers are observed, including the signature orbitals of enol form, the variation tendency of total orbital intensity, and the variation order of the maximum orbital intensity. In the outer valence momentum space (outside 26a), orbital composed by pz electrons show single peak with a gradual increasing peak site from 0.5 a.u. of inner valence orbital to 1.0 a.u. of outer valence orbital, whereas orbitals composed by px,y electrons form double peaks with respective sites at about 0.5 and 1.5 a.u., only three px,y-orbitals present single peaks (33a,34a,36a). The general variation trends in the complete valence space for all the valence orbitals on their intensities, peak sites, and orbital components are concluded.