2018
DOI: 10.1007/s00208-018-1783-8
|View full text |Cite
|
Sign up to set email alerts
|

Siu’s lemma, optimal $$L^2$$ extension and applications to twisted pluricanonical sheaves

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
20
0
2

Year Published

2019
2019
2024
2024

Publication Types

Select...
5
2

Relationship

1
6

Authors

Journals

citations
Cited by 29 publications
(22 citation statements)
references
References 37 publications
0
20
0
2
Order By: Relevance
“…利用我们解 决强开性猜想的思想与工作, 朱朗峰和作者 [50] 发现了广义的萧荫堂引理. 基于弱拟凸 Kähler 流形上具奇异度量线丛的最优 L 2 延拓定理、广义的萧荫堂引理和乘子理想 层的强开性等, 朱朗峰和作者 [51] 得到了 Kähler 纤维化时扭化相对多典则丛 (twisted relative pluricanonical bundles) 及其直接像 (direct images) 的正性, 该结果在代数纤维空间情形由文献 [52,53] 获 得. 朱朗峰和作者 [51] 还解决了文献 [52,53] 两次提及的一个猜想.…”
Section: 新近进展unclassified
See 1 more Smart Citation
“…利用我们解 决强开性猜想的思想与工作, 朱朗峰和作者 [50] 发现了广义的萧荫堂引理. 基于弱拟凸 Kähler 流形上具奇异度量线丛的最优 L 2 延拓定理、广义的萧荫堂引理和乘子理想 层的强开性等, 朱朗峰和作者 [51] 得到了 Kähler 纤维化时扭化相对多典则丛 (twisted relative pluricanonical bundles) 及其直接像 (direct images) 的正性, 该结果在代数纤维空间情形由文献 [52,53] 获 得. 朱朗峰和作者 [51] 还解决了文献 [52,53] 两次提及的一个猜想.…”
Section: 新近进展unclassified
“…基于弱拟凸 Kähler 流形上具奇异度量线丛的最优 L 2 延拓定理、广义的萧荫堂引理和乘子理想 层的强开性等, 朱朗峰和作者 [51] 得到了 Kähler 纤维化时扭化相对多典则丛 (twisted relative pluricanonical bundles) 及其直接像 (direct images) 的正性, 该结果在代数纤维空间情形由文献 [52,53] 获 得. 朱朗峰和作者 [51] 还解决了文献 [52,53] 两次提及的一个猜想. 在文献 [54,55] 中, 我们结合 L 2 方法, 在几何不变量理论框架下建立了比 Kiselman-Berndtsson (均为瑞典皇家科学院院士) 更广的关于多次调和函数的极小原理.…”
Section: 新近进展unclassified
“…Our proof of the generalized Siu's lemma is based on the strong openness property of multiplier ideal sheaves (conjectured by Demailly in [12] and [13] and by many others, and solved in [21]). The reader is referred to [43] for further studies on the generalized Siu's lemma. These studies on the generalized Siu's lemma constitute a key element of the proofs of our main results outlined in the present paper, being combined with many known ideas, results and techniques.…”
Section: Introductionmentioning
confidence: 99%
“…In [4] (see also [5]), Berndtsson and Pȃun established an iteration method to obtain L q extension theorems (0 < q < 2) from L 2 extension theorems, where the constants in the final estimates are consistent. One can use this iteration method to obtain optimal L q extension theorems (0 < q < 2) with singular metrics in the Kähler case from optimal L 2 extension theorems with singular metrics in the Kähler case (the reader is referred to [20] for projective cases, and to [7,41,43] for general Kähler cases).…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation