Grasslands constitute over 25% of the global land surface and close to one-third of southern Africa. Natural and semi-natural grasslands are recognized globally for their high biodiversity value and their important contribution to the provision of ecosystem services, including provisioning services such as carbon sequestration, water catchments, and grazing for livestock and wildlife. Nonetheless, grasslands are consistently reduced and threatened by anthropogenic activities and invasive alien plants. Invasive alien plants may hinder the growth of natural vegetation by overconsumption of resources. The impact of invasive alien plants on natural vegetation may indirectly affect plant-to-animal interactions such as specialized pollination and seed dispersal syndromes which may ultimately disturb ecosystem processes. The Sandstone Sourveld in KwaZulu-Natal province of South Africa is a threatened grassland ecosystem as a result of various anthropogenic disturbances. Knowledge of arthropod response to differences in habitat types may be essential for an improved understanding of the structure and functioning of ecosystems, which is relevant for informing conservation practice. The aim of this study was to investigate the composition and diversity patterns of ground-dwelling arthropods (ants, beetles, Orthopterans, and spiders) in three habitat types (forest, intact grassland, and disturbed grassland) at Springside and Tanglewood Nature Reserves, which occur in the KwaZulu-Natal Sandstone Sourveld (KZNSS). The objectives were: (i) to document the response of the ground-dwelling arthropod community in different habitat types, (ii) to determine the impacts of seasonal change on the abundance and richness of ground-dwelling arthropods at the two sites, and (iii) to determine the correlation between the distribution of ground-dwelling arthropods and soil characteristics in the KZNSS. Ground-dwelling arthropods were sampled in Springside and Tanglewood Nature Reserves using pitfall traps in each habitat type. Soil parameters in the habitats were also assessed. Analysis of variance was used to test for differences in arthropod morphospecies richness and abundance across the habitat types and between seasons. The Shannon-Weiner diversity index was computed and used to compare the diversity of ground-dwelling arthropods between the two sites and among habitat types. Ground-dwelling arthropods showed varying patterns in response to habitat characteristics and the disturbance gradient at Springside and Tanglewood. Intact grassland was the most diverse habitat in both Springside and Tanglewood. In Tanglewood, the abundance of ants was greater in disturbed grassland which consisted of a variety of alien invasive shrubs, the high abundance was explained by the “intermediate disturbance hypothesis”. However, alien invasion showed more negative than positive impacts on the abundance and composition of ground-dwelling arthropods when there was a significant decrease in the abundance and composition of ants, beetles and spiders. Species richness of ants and beetles was higher in the wet than dry season whereas Orthopterans and spiders showed no significant difference between seasons. In all arthropod groups, a greater number of species were correlated to soil potassium, soil pH, and soil bulk density. Overall, the intact grassland had the highest species richness and abundance followed by the forest and lastly the disturbed grassland. The greater abundance of ants, beetles, and spiders in the pristine grasslands of KZNSS shows that there is still a need to conserve the remnants of the KZNSS vegetation. Therefore, the conservancy management is urged to consider the eradication of alien invasive plants. Future studies are recommended to consider the volant and vegetation canopy arthropods as they are all interdependent with ground-dwelling arthropods to form a whole community of arthropods in an ecosystem.