Extensive analyses of thermodynamic imbalance, surface energy, and segregation of nanotubes on nanoparticle surfaces are performed. A model for surface energy i developed. In addition, nanotube growth both by vapor-phase and solid-phase mechanisms is described. Segregation of the nanotube species to the periphery of the nanoparticle, the creation of an amorphous shell at this periphery, a droplet created in this shell, and the mediation of this droplet for supersaturation and nucleation of the nanotube species may be the true causes of nanotube growth.