We investigated whether distance estimation accuracy over open water is influenced by the viewing direction of the observer. Twenty-two healthy students (9 male, 13 female) made 10 distance estimates ranging between 50 and 950 m actual distance in 2 viewing conditions: (1) from shore to boat and (2) from boat to shore. There were no consistent differences in estimation accuracy between viewing directions. The group data revealed a general tendency to underestimate actual distances (74%), but there was considerable interindividual variance (mean error of 74% ± 27%, range = 31% to 145%). A multilevel regression model of estimate accuracy suggests there were three subgroups of participants. One subgroup (N = 4, 18%) were consistent underestimaters, regardless of distance, whereas another subgroup (N = 5, 23%) consistently overestimated. However, the majority (N = 13, 59%) tended to underestimate at shorter distances (less than 400 m) and then overestimate at longer distances. These findings have important implications in survival situations in open water where an individual may need to judge an estimated distance against their perceived swimming capacity in order to self-rescue.