Particle-size distribution effects on the energy levels of semiconductor quantum dots are investigated. By examining the low temperature photoluminescence spectra of microcrystals of the binary semiconductor CdSe embedded in a glass matrix, the distribution of energy levels due to three-dimensional confinement is determined. Calculations of the electron-hole pair ground state energy provide a relation between confinement energy and particle diameter. This allows conversion of the photoluminescence lineshape directly into a distribution of particle radii and facilitates analysis of the observed properties of the material. With extension to other systems the technique can become a valuable tool in the study of semiconductor microparticle composites.