Lignin is an abundant renewable source of aromatics, but its complex heterogeneous structure poses challenges for its depolymerization and valorization. Heterogeneously catalyzed reductive depolymerization (HCRD) has emerged as a promising approach, utilizing heterogeneous catalysts to facilitate selective bond cleavage in lignin and hydrogen transfer to stabilize the products under mild conditions. This review provides a comprehensive understanding of the hydrogen transfer mechanisms in HCRD involving different hydrogen sources including molecular hydrogen, alcohols, formic acid, etc., and the native hydrogen donor groups in lignin. Recent advances in catalyst design for efficient lignin depolymerization are systematically discussed, focusing on precious metal‐based (Pt, Ru, Pd) and non‐precious metal‐based catalysts. Factors influencing catalyst performance, such as metal‐support interactions, promoters, and synergistic effects, are highlighted. The diverse array of high‐value aromatic chemicals obtained from HCRD is overviewed. Finally, the significance of HCRD in the context of lignin valorization and the development of integrated biorefineries is discussed, underscoring its potential to contribute to a sustainable bioeconomy.