To probe the role of protein conformation in the formation and kinetic stability of discoidal lipoproteins, thermal unfolding and refolding studies were carried out using model lipoproteins reconstituted from dimyristoylphosphatidylcholine (DMPC) and selected mutants of human apolipoprotein C-1 (apoC-1). Circular dichroism (CD) spectroscopy and electron microscopy show that the Q31P mutant, which has alpha-helical content in solution (33%) and on DMPC disks (67%) similar to that of the wild type (WT), forms disks of smaller diameter, = 13 nm, compared to 17 nm of the WT-DMPC disks. The L34P mutant, which is largely unfolded in solution, forms disks with alpha-helix content and diameter similar to those of the WT. The R23P mutant, which is fully unfolded in solution, forms disks that have similar diameter but reduced alpha-helix content (40%) compared to the WT-DMPC disks (65%). Remarkably, despite large variations in the alpha-helix content or the disk diameter among different mutant-DMPC complexes, the mutations have no significant effect on the unfolding rates or the Arrhenius activation energy of the disk denaturation, E(a) = 25-29 kcal/mol. This suggests that the kinetic stability of the discoidal complexes is dominated by the lipid-lipid rather than the protein-lipid interactions. In contrast to the heat denaturation, the lipoprotein reconstitution upon cooling monitored by CD and light scattering is significantly affected by mutations, with Q31P forming disks in the broadest and R23P in the narrowest temperature range. Our results suggest that the apolipoprotein helical structure in solution facilitates reconstitution of discoidal lipoproteins but has no significant effect on their kinetic stability.