The deterioration of air quality via anthropogenic activities during the night period has been deemed a serious concern among the scientific community. Thereby, we explored the outdoor particulate matter (PM) concentration and the contributions from various sources during the day and night in winter and spring 2021 in a megacity, northwestern China. The results revealed that the changes in chemical compositions of PM and sources (motor vehicles, industrial emissions, coal combustion) at night lead to substantial PM toxicity, oxidative potential (OP), and OP/PM per unit mass, indicating high oxidative toxicity and exposure risk at nighttime. Furthermore, higher environmentally persistent free radical (EPFR) concentration and its significant correlation with OP were observed, suggesting that EPFRs cause reactive oxygen species (ROS) formation. Moreover, the noncarcinogenic and carcinogenic risks were systematically explained and spatialized to children and adults, highlighting intensified hotspots to epidemiological researchers. This better understanding of day− night-based PM formation pathways and their hazardous impact will assist to guide measures to diminish the toxicity of PM and reduce the disease led by air pollution.