The stability and dispersity of AuNMs in solution play a key role for the many applications. Most inorganic nanomaterials are not well dispersed in physiological buffers and require function-alization by thiols or surfactants to offer the stabilization forces. Furthermore, sufficient blood circulation time is critical for both imaging and in vivo drug delivery. Localized surface Plasmon resonance (LSPR) is one of the most significant features of AuNMs. The AuNMs as reporters have been broadly applied into lateral flow immunechromatographicalassay (LFICA) and enzyme-linked immunosorbent assay (ELISA), which is a well-established technology for analysis of the target analytes in food safety, clinical diagnosis, environmental monitoring, and medical science and so on. Au based nanomaterials (AuNMs) are known to possess many attractive features such as unique electrical, optical and catalytic properties as well as excellent biocompatibility. In this review, we summarize the current advancement on application of AuNMs in analytical sciences based on their local surface plasmon resonance, fluorescence and electrochemistry properties. AuNMs based imaging and therapy in biomolecules is explained. As one of the most reliable imaging modes, computed tomography (CT), X-ray and SERS imaging has been widely used owing to its high spatial and density resolution. We end the review by a discussion of the conjugation between gold nanoparticles with other kinds of nanoparticles such as other metals and carbon nano structures. Finally, future development in this research area is also prospected.