2022
DOI: 10.1007/s11128-022-03664-w
|View full text |Cite
|
Sign up to set email alerts
|

SKC-CCCO: an encryption algorithm for quantum group signature

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

0
2
0
2

Year Published

2023
2023
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(4 citation statements)
references
References 66 publications
0
2
0
2
Order By: Relevance
“…量子群签名作为经典群 签名的量子对应物, 由Wen等人 [17] 首次提出. 此后, 不 同类型的量子群签名算法被相继提出, 一类基于量子 隐形传态 [13,[18][19][20][21] , 另一类则基于对称加密 [22,23] . 门 限群签名是群签名的一个特殊分支, 适用于群组中 不存在互相信任的参与方的场景.…”
Section: 群签名是数字签名的一种变体 最早由Chaum和vanunclassified
See 1 more Smart Citation
“…量子群签名作为经典群 签名的量子对应物, 由Wen等人 [17] 首次提出. 此后, 不 同类型的量子群签名算法被相继提出, 一类基于量子 隐形传态 [13,[18][19][20][21] , 另一类则基于对称加密 [22,23] . 门 限群签名是群签名的一个特殊分支, 适用于群组中 不存在互相信任的参与方的场景.…”
Section: 群签名是数字签名的一种变体 最早由Chaum和vanunclassified
“…由于 硬币量子游走可以通过操控不同类型的硬币算子以生 成不同的量子纠缠态, 因此它可以作为一种实现隐形 传态技术的有效方式. 该技术可以从纠缠态的生成与 测量方面提高隐形传态的效率, 已经在量子签名领域 获得关注并取得了一些成果 [19,[34][35][36] . 此外, 硬币量子 游走可以实现一种支持多方参与的广义隐形传态技 术 [26,28] , 该技术为量子门限群签名的实现铺平了道路.…”
Section: 群签名是数字签名的一种变体 最早由Chaum和vanunclassified
“…In terms of signature schemes designed based on quantum computing, Feng et al. [ 18 ] proposed a new quantum group signature scheme to enhance the non-repudiation of signatures. Lu et al.…”
Section: Introductionmentioning
confidence: 99%
“…The continuous-time variant is described using only the position Hilbert space of the walker, whereas, the discrete-time variant requires an additional internal Hilbert space, dubbed the coin space of the walker. Continuous-time formalism, for example, has been effectively used in spatial search protocols [50], in defining graph kernels [51],encryption algorithms [52], and in modelling of energy transfer in photosynthesis [53]. The discrete-time quantum walk (DTQW) formalism offers the possibility of engineering the dynamics of the walker with more control, due to an additional degree of freedom provided by the coin Hilbert space.…”
Section: Introductionmentioning
confidence: 99%