Cytochrome c oxidase assembly factor 7 (COA7) is a metazoan-specific assembly factor, critical for the biogenesis of mitochondrial complex IV (cytochrome c oxidase). Although mutations in COA7 have been linked in patients to complex IV assembly defects and neurological conditions such as peripheral neuropathy, ataxia and leukoencephalopathy, the precise role COA7 plays in the biogenesis of complex IV is not known. Here we show that the absence of COA7 leads to arrest of the complex IV assembly pathway at the initial step where the COX1 module is built, which requires incorporation of copper and heme cofactors. In solution, purified COA7 binds heme with micromolar affinity, through axial ligation to the central iron atom by histidine and methionine residues. Surprisingly, the crystal structure of COA7, determined to 2.4 angstroms resolution, reveals a banana-shaped molecule composed of five helix-turn-helix repeats, tethered by disulfide bonds, with a structure entirely distinct from proteins with characterized heme binding activities. We therefore propose a role for COA7 in heme binding/chaperoning in the mitochondrial intermembrane space, this activity being crucial for and providing a missing link in complex IV biogenesis.