2022
DOI: 10.1142/s0218127422501115
|View full text |Cite
|
Sign up to set email alerts
|

Sketching 1D Stable Manifolds of 2D Maps Without the Inverse

Abstract: Saddle fixed points are the centerpieces of complicated dynamics in a system. The one-dimensional stable and unstable manifolds of these saddle-points are crucial to understanding the dynamics of such systems. While the problem of sketching the unstable manifold is simple, plotting the stable manifold is not as easy. Several algorithms exist to compute the stable manifold of saddle-points, but they have their limitations, especially when the system is not invertible. In this paper, we present a new algorithm t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 5 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?