In this paper, we address the question of information preservation in ill-posed, non-linear inverse problems, assuming that the measured data is close to a low-dimensional model set. We provide necessary and sufficient conditions for the existence of a so-called instance optimal decoder, i.e., that is robust to noise and modelling error. Inspired by existing results in compressive sensing, our analysis is based on a (Lower) Restricted Isometry Property (LRIP), formulated in a non-linear fashion. We also provide sufficient conditions for non-uniform recovery with random measurement operators, with a new formulation of the LRIP. We finish by describing typical strategies to prove the LRIP in both linear and non-linear cases, and illustrate our results by studying the invertibility of a one-layer neural net with random weights.1 A pseudometric d satisfies all the requirements of a metric except d(x, y) = 0 ⇒ x = y. 2 Similarly, a seminorm satisfy the requirements of a norm except that x = 0 does not imply x = 0.