“…Proof. The map x → x (rk) is bijective because (x (rk) ) (rk) = x by Lemma 4.8 (6) and (B4). The map is a homomorphism: t r (x, y, z) (rk) = L.4.8 (7) t r (x, y (rk) , z (rk) ) = t r ((x (rk) ) (rk) , y (rk) , z (rk) ) = q((x (rk) ) (rk) , y (rk) /r, z (rk) /r) = L.4.8 (4) q(x (rk) , y (rk) /k, z (rk) /k) = t k (x (rk) , y (rk) , z (rk) ).…”