Local interactions among individual members of a population can generate intricate small-scale spatial structure, which can strongly influence population dynamics. The two-way interplay between local interactions and population dynamics is well understood in the relatively simple case where the population occupies a fixed domain with a uniform average density. However, the situation where the average population density is spatially varying is less well understood. This situation includes ecologically important scenarios such as species invasions, range shifts, and moving population fronts. Here, we investigate the dynamics of the spatial stochastic logistic model in a scenario where an initially confined population subsequently invades new, previously unoccupied territory. This simple model combines density-independent proliferation with dispersal, and density-dependent mortality via competition with other members of the population. We show that, depending on the spatial scales of dispersal and competition, either a clustered or a regular spatial structure develops over time within the invading population. In the short-range dispersal case, the invasion speed is significantly lower than standard predictions of the mean-field model. We conclude that mean-field models, even when they account for non-local processes such as dispersal and competition, can give misleading predictions for the speed of a moving invasion front.