Purpose
Existing research on the relationship between big data and organizational decision quality is still few and far between, and what does exist often assumes direct effects of big data on decision quality. More recent research indicates that such direct effects may be too simplistic, and in particular, an organization’s overall human skills are often not considered sufficiently. Inspired by the knowledge-based view, we therefore propose that interactions between three aspects of big data usage and management accountants’ data analytics skills may be key to reaching high-quality decisions. The purpose of this study is to test these predictions based on a survey of US firms.
Design/methodology/approach
The authors draw on survey data from 140 US firms. This survey has been conducted via MTurk in 2020.
Findings
The results of the study show that the quality of big data sources is associated with higher perceived levels of decision quality. However, according to the results, the breadth of big data sources and a data-driven culture only improve decision quality if management accountants’ data analytics skills are highly developed. These results point to the important, but so far unexamined role of an organization’s management accountants and their skills for translating big data into high-quality decisions.
Practical implications
The present study highlights the importance of an organization’s human skills in creating value out of big data. In particular, the findings imply that management accountants may need to increasingly draw on data analytics skills to make the most out of big data for their employers.
Originality/value
This study is among the first, to the best of the authors’ knowledge, to provide empirical proof of the relevance of an organization’s management accountants and their data analytics skills for reaching desirable firm-level outcomes. In addition, this study thus adds to the further advancement of the knowledge-based view by providing evidence that in contemporary big-data environments, interactions between tacit and explicit knowledge seem crucial for driving desirable firm-level outcomes.