Measurements of the dark energy equation-of-state parameter, w, have been limited by uncertainty in the selection effects and photometric calibration of z < 0.1 Type Ia supernovae (SNe Ia). The Foundation Supernova Survey is designed to lower these uncertainties by creating a new sample of z < 0.1 SNe Ia observed on the Pan-STARRS system. Here, we combine the Foundation sample with SNe from the Pan-STARRS Medium Deep Survey and measure cosmological parameters with 1,338 SNe from a single telescope and a single, well-calibrated photometric system. For the first time, both the low-z and high-z data are predominantly discovered by surveys that do not target pre-selected galaxies, reducing selection bias uncertainties. The z > 0.1 data include 875 SNe without spectroscopic classifications and we show that we can robustly marginalize over CC SN contamination. We measure Foundation Hubble residuals to be fainter than the pre-existing low-z Hubble residuals by 0.046 ± 0.027 mag (stat+sys). By combining the SN Ia data with cosmic microwave background constraints, we find w = −0.938 ± 0.053, consistent with ΛCDM. With 463 spectroscopically classified SNe Ia alone, we measure w = −0.933 ± 0.061. Using the more homogeneous and better-characterized Foundation sample gives a 55% reduction in the systematic uncertainty attributed to SN Ia sample selection biases. Although use of just a single photometric system at low and high redshift increases the impact of photometric calibration uncertainties in this analysis, previous low-z samples may have correlated calibration uncertainties that were neglected in past studies. The full Foundation sample will observe up to 800 SNe to anchor the LSST and WFIRST Hubble diagrams.