Background: Vascular reperfusion of Thiel cadavers can aid surgical and anatomical instruction. This study investigated whether ideal embalming circumstances provide lifelike vascular flow, enabling surgical practice and enhancing anatomical reality. Methods: Pressure-controlled pump-driven administration of blue embalming solution was assessed directly postmortem in a pig model (n = 4). Investigation of subsequent pump-driven vascular injection of red paraffinum perliquidum (PP) included assessment of flow parameters, intracorporeal distribution, anatomical alterations, and feasibility for surgical training. The microscopic distribution of PP was analyzed in pump-embalmed pig and gravity-embalmed human small intestines. Results: Embalming lasted 50-105 min, and maximum arterial pressure was 65 mm Hg. During embalming, the following consecutive alterations were observed: arterial filling, organ coloration, venous perfusion, and further tissue coloration during the next weeks. Most organs were adequately preserved. PP generated low arterial pressures (<30 mm Hg) and drained through the venous cannula. Generally, realistic reperfusion and preservation of original anatomy were observed, but leakage in the pleural, abdominal, and retroperitoneal cavities occurred, and computed tomography showed edematous spleen and liver. Reduction of arterial flow rates after venous drainage is a prerequisite to prevent anatomical deformation, allowing simulation of various surgeries. In pump-embalmed pig small intestines, PP flowed from artery to vein through the capillaries without extravasation. In contrast, arterioles were blocked in gravity-embalmed human tissues. Conclusions: In a pig model, immediate postmortem pressure-controlled pump embalming generates ideal circumstances for (micro)vascular reperfusion with PP, permitting lifelike anatomy instruction and surgical training.