Combustion instability in solid propellant rocket motor is numerically simulated by implementing propellant response function with quasi steady homogeneous one dimensional formulation. The convolution integral of propellant response with pressure history is implemented through a user defined function in commercial computational fluid dynamics software. The methodology is validated against literature reported motor test and other simulation results. Computed amplitude of pressure fluctuations compare closely with the literarture data. The growth rate of pressure oscillations of a cylindrical grain solid rocket motor is determined for different response functions at the fundamental longitudinal frequency. It is observed that for response function more than a critical value, the motor exhibits exponential growth rate of pressure oscillations.