Background: Acute myeloid leukemia (AML) is one of the most common malignant and aggressive hematologic tumors, and its pathogenesis is associated with abnormal post-transcriptional regulation. Unbalanced competitive endogenous RNA (ceRNA) promotes tumorigenesis and progression, and greatly contributes to tumor risk classification and prognosis. However, the comprehensive analysis of the circular RNA (circRNA)-long non-coding RNA (lncRNA)-miRNA-mRNA ceRNA network in the prognosis of AML is still rarely reported. Method: We obtained transcriptome data of AML and normal samples from The Cancer Genome Atlas (TCGA), Genotype-tissue Expression (GTEx), and Gene Expression Omnibus (GEO) databases, and identified differentially expressed (DE) mRNAs, lncRNAs, and circRNAs. Then, the targeting relationships among lncRNA-miRNA, circRNA-miRNA, and miRNA-mRNA were predicted, and the survival related hub mRNAs were further screened by univariate and multivariate Cox proportional hazard regression. Finally, the AML prognostic circRNA-lncRNA-miRNA-mRNA ceRNA regulatory network was established. Results: We identified prognostic 6 hub mRNAs (TM6SF1, ZMAT1, MANSC1, PYCARD, SLC38A1, and LRRC4) through Cox regression model, and divided the AML samples into high and low risk groups according to the risk score obtained by multivariate Cox regression. Survival analysis verified that the survival rate of the high-risk group was significantly reduced (p < 0.0001). The prognostic ceRNA network of 6 circRNAs, 32 lncRNAs, 8 miRNAs, and 6 mRNAs was established according to the targeting relationship between 6 hub mRNAs and other RNAs. Conclusion: In this study, ceRNA network jointly participated by circRNAs and lncRNAs was established for the first time. It comprehensively elucidated the post-transcriptional regulatory mechanism of AML, and identified novel AML prognostic biomarkers, which has important guiding significance for the clinical diagnosis, treatment, and further scientific research of AML.