Recently, graph theory has become a promising tool for biomedical signal analysis, wherein the signals are transformed into a graph network and represented as either adjacency or Laplacian matrices. However, as the size of the time series increases, the dimensions of transformed matrices also expand, leading to a significant rise in computational demand for analysis. Therefore, there is a critical need for efficient feature extraction methods demanding low computational time. This paper introduces a new feature extraction technique based on the Gershgorin Circle theorem applied to biomedical signals, termed Gershgorin Circle Feature Extraction (GCFE). The study makes use of two publicly available datasets: one including synthetic neural recordings, and the other consisting of EEG seizure data. In addition, the efficacy of GCFE is compared with two distinct visibility graphs and tested against seven other feature extraction methods. In the GCFE method, the features are extracted from a special modified weighted Laplacian matrix from the visibility graphs. This method was applied to classify three different types of neural spikes from one dataset, and to distinguish between seizure and non-seizure events in another. The application of GCFE resulted in superior performance when compared to seven other algorithms, achieving a positive average accuracy difference of 2.67% across all experimental datasets. This indicates that GCFE consistently outperformed the other methods in terms of accuracy. Furthermore, the GCFE method was more computationally-efficient than the other feature extraction techniques. The GCFE method can also be employed in real-time biomedical signal classification where the visibility graphs are utilized such as EKG signal classification.