2023
DOI: 10.48550/arxiv.2301.09813
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Slice-and-Forge: Making Better Use of Caches for Graph Convolutional Network Accelerators

Abstract: Graph convolutional networks (GCNs) are becoming increasingly popular as they can process a wide variety of data formats that prior deep neural networks cannot easily support. One key challenge in designing hardware accelerators for GCNs is the vast size and randomness in their data access patterns which greatly reduces the effectiveness of the limited on-chip cache. Aimed at improving the effectiveness of the cache by mitigating the irregular data accesses, prior studies often employ the vertex tiling techniq… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 53 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?