The slice Dirac operator over octonions is a slice counterpart of the Dirac operator over quaternions. It involves a new theory of stem functions, which is the extension from the commutative O(1) case to the non-commutative O(3) case. For functions in the kernel of the slice Dirac operator over octonions, we establish the representation formula, the Cauchy integral formula (and, more in general, the Cauchy-Pompeiu formula), and the Taylor as well as the Laurent series expansion formulas.