Handbook of Software Fault Localization 2023
DOI: 10.1002/9781119880929.ch3
|View full text |Cite
|
Sign up to set email alerts
|

Slicing‐Based Techniques for Software Fault Localization

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 43 publications
0
1
0
Order By: Relevance
“…Wong, Debroy, Li, & Gao, 2012), (Zheng et al, 2024), (Ghanbari & Zhang, 2019), slicing-based methods (Soha, 2023; W.E. Wong, Agrawal, & Zhang, 2023), model-based methods (Oakes, Troya, Galasso, & Wimmer, 2023;Zhong & Mei, 2020), stack trace-based methods (Schroter, Schröter, Bettenburg, & Premraj, 2010;Zhao et al, 2023), program-state-based methods (Li, Li, Huo, & Feng, 2016;Zeller, 2002), machine learning-based bug localization (Gou et al, 2024), (Fang et al, 2021), (Meng, Wang, Zhang, Sun, & Liu, 2022), and natural language processing-based bug localization (Fejzer, Narębski, Przymus, & Stencel, 2021;Zhou, Zhang, & Lo, 2012). Among these, SBFL stands out as the most commonly employed approach.…”
Section: Introductionmentioning
confidence: 99%
“…Wong, Debroy, Li, & Gao, 2012), (Zheng et al, 2024), (Ghanbari & Zhang, 2019), slicing-based methods (Soha, 2023; W.E. Wong, Agrawal, & Zhang, 2023), model-based methods (Oakes, Troya, Galasso, & Wimmer, 2023;Zhong & Mei, 2020), stack trace-based methods (Schroter, Schröter, Bettenburg, & Premraj, 2010;Zhao et al, 2023), program-state-based methods (Li, Li, Huo, & Feng, 2016;Zeller, 2002), machine learning-based bug localization (Gou et al, 2024), (Fang et al, 2021), (Meng, Wang, Zhang, Sun, & Liu, 2022), and natural language processing-based bug localization (Fejzer, Narębski, Przymus, & Stencel, 2021;Zhou, Zhang, & Lo, 2012). Among these, SBFL stands out as the most commonly employed approach.…”
Section: Introductionmentioning
confidence: 99%