2021
DOI: 10.1109/access.2021.3071409
|View full text |Cite
|
Sign up to set email alerts
|

SLID: Exploiting Spatial Locality in Input Data as a Computational Reuse Method for Efficient CNN

Abstract: Convolutional Neural Networks (CNNs) revolutionized computer vision and reached the state-of-the-art performance for image processing, object recognition, and video classification. Even though CNN inference is notoriously compute-intensive, as convolutions account for > 90% of the total operation tasks, the ability to tradeoff between accuracy, performance, power, and latency to meet target application makes it an open research topic. This paper proposes the Spatial Locality Input Data (SLID) method for comput… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
3
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
2
1
1

Relationship

2
6

Authors

Journals

citations
Cited by 10 publications
(5 citation statements)
references
References 29 publications
0
3
0
2
Order By: Relevance
“…Igualmente, redes Neuronales convolucionales cuánticas (QOCNN) es un método que implica tomar las circunvoluciones y la agrupación típica de las CNN y traducirlas de forma cuántica [20]. YOLO (You Only Look One) es una técnica de detección de objetos múltiples extremadamente rápida en tiempo real [21]. Finalmente, las redes Neuronales de Picos (SNN) es una técnica donde las neuronas se presentan en forma puntiaguda denominadas redes neuronales de tercera generación [22].…”
Section: Resultados Y Discusionesunclassified
See 1 more Smart Citation
“…Igualmente, redes Neuronales convolucionales cuánticas (QOCNN) es un método que implica tomar las circunvoluciones y la agrupación típica de las CNN y traducirlas de forma cuántica [20]. YOLO (You Only Look One) es una técnica de detección de objetos múltiples extremadamente rápida en tiempo real [21]. Finalmente, las redes Neuronales de Picos (SNN) es una técnica donde las neuronas se presentan en forma puntiaguda denominadas redes neuronales de tercera generación [22].…”
Section: Resultados Y Discusionesunclassified
“…En cuanto a la categoría de tecnología, se debe precisar aquellos programas que hacen posible la integración de los algoritmos con la implementación y el tratamiento de los datos. Por ejemplo, en [21] se logró alcanzar un buen desempeño en el sistema de detección de aves relacionado con la precisión utilizando la tecnología YOLO. Esta tecnología permitió crear un algoritmo para el aprendizaje automático programado en Python.…”
unclassified
“…• Analyze the impact of the proposed approach on AI CIFAR-10 and examine the impact on the switching activity and reduced energy consumption. Major works in the literature on efficient CNN focus on reducing the complexity through different methods which would reflect on reduced energy, area, and speed-up in performance: Propose techniques to reduce the number of operations: quantization, pruning, fast algorithms, and computational re-use are some examples [2]- [5]. Explore other computing paradigms: In-memory computing (IMC) that is capable of performing computation on the same physical place where data is stored [6].…”
Section: Introductionmentioning
confidence: 99%
“…Therefore, often, alternative approaches, including data reuse [15] and approximate computing [16]- [24], are adopted in conjunction with data quantization to further expand the design space exploration for the specific application. Some of the referenced techniques [16]- [18] adopt operation-level approximations, while others [19]- [24] exploit data dependency across convolutional and auxiliary layers. In particular, the strategies presented in [19] and [20] are based on detection algorithms able to predict negative feature map values.…”
Section: Introductionmentioning
confidence: 99%