Sliding Homoclinic Bifurcations in a Class of Three-Dimensional Piecewise Affine Systems
Tiantian Wu,
Zhe Zhao,
Songmei Huan
Abstract:This paper studies sliding homoclinic bifurcations in a class of symmetric three-zone three-dimensional piecewise affine systems. The systems have one parameter and the unperturbed systems have a pair of sliding homoclinic orbits to a saddle. Based on the analysis of the one-dimensional Poincaré maps, two types of sliding cycles are obtained from the sliding homoclinic bifurcations of the systems. In addition, two examples of sliding homoclinic orbits and sliding cycles are provided with simulations to illustr… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.