This study delves into the Extended Kalman Filter's (EKF) use in ocean science through a detailed bibliometric and text mining examination. Tracing its roots back to the original Kalman Filter from the 1960s, the EKF has become crucial for managing nonlinear dynamics, especially in oceanography. Our analysis, drawing from Scopus data covering 1980-2023, delivers an extensive overview of the EKF's growth, applications, and cross-disciplinary influence in this area. We employed sophisticated bibliometric methods, including Biblioshiny, and text mining approaches via VOSviewer to dissect trends, and thematic groupings in EKF-related ocean science research. The results demonstrate a steady increase in EKF applications, particularly in autonomous underwater vehicle navigation, forecasting ocean currents, and modeling marine ecosystems. The bibliometric findings show its broad interdisciplinary appeal, while the text analysis underscores the EKF's integration with cutting-edge computational techniques and its significance in burgeoning oceanographic technologies. The paper highlights the EKF's indispensable role in ocean science, reflecting its historical importance and versatility in addressing contemporary challenges in marine technology. The study not only sheds light on the EKF's historical and current uses but also suggests potential future directions for research and innovation. It aims to offer crucial insights to researchers, academicians, and policy makers, underlining the EKF's significance in the dynamic, ever-changing realm of ocean science.