In this study, the aerodynamic analysis of Ahmed body which is generic automobile model is performed to determine convenient turbulence model and reduce drag coefficient by modifying shape of model. For this purpose, Computational Fluid Dynamics (CFD) analysis is carried out using different turbulence models that are Spalart-Allmaras, (Shear Stress Transport) SST k-, Standard k-, Realizable k-, (Re-Normalisation Group) RNG k- turbulence models. The results are compared with experimental data that is available in literature. The results show that RNG k- turbulence model gives superior performance when compared with other models. In order to reduce drag coefficient, the upper region of sides of model is rounded by applying fixed blend radius with 25 mm. The smooth surface can provide high performance in point of aerodynamics. CFD solution is then repeated for the modified model and the result show that drag coefficient value reduces about 6%. In addition, the second modification is performed by applying fixed blend radius with rounded both upper sides and rear underside of body and chamfer with 50 mm is also applied to rear sides of body. However, drag coefficient reduction level is approximately same with first modified model. The pressure coefficient contours and velocity streamlines are presented to show results for baseline and modified bodies.