This paper considers the problem of constrained path following control for an underactuated hovercraft subject to parametric uncertainties and external disturbances. A four-degree-of-freedom hovercraft model with unknown curve-fitted coefficients is first rewritten into a parameterized form. By introducing a barrier Lyapunov function into the line-of-sight guidance, the specific transient tracking performance in terms of position error is guaranteed. A novel constrained yaw rate controller is proposed to ensure time-varying yaw rate constraint satisfaction, in which the yaw rate barrier is required to vary with the speed of the hovercraft. Moreover, a command filter is incorporated into the control design to generate the desired virtual controls and its time derivatives. Theoretical analyses show that, under the proposed controller, the position tracking error constraints and the yaw rate constraint can be strictly guaranteed. Finally, numerical simulations illustrate the effectiveness and advantages of the proposed control scheme.