2023
DOI: 10.1177/01423312231186214
|View full text |Cite
|
Sign up to set email alerts
|

Sliding mode control based on particle swarm optimization neural network and adaptive reaching law

Jiqing Chen,
Haiyan Zhang,
Shangtao Pan
et al.

Abstract: This paper presents a sliding mode control based on particle swarm optimization neural network and adaptive reaching law, and the proposed control method solves the problem of chattering and tracking performance degradation of a multi-joint manipulator caused by uncertainties such as external disturbances and modeling error. First, to address the problem that the precise dynamic system of the manipulator is difficult to establish, the radial basis function neural network (RBFNN) is used to approximate the unce… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?