This version is available at https://strathprints.strath.ac.uk/58494/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.ukThe Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output. (SDEs) by the feedback controls based on the discrete-time observations of the state. However, the feedback controls still depend on the continuous-time observations of the mode. Of course this is perfectly fine if the mode of the system is obvious (i.e. fully observable at no cost). However, it could often be the case where the mode is not obvious and it costs to identify the current mode of the system. To reduce the control cost, it is reasonable we identify the mode at the discrete times when we make observations for the state. Hence the feedback control should be designed based on the discrete-time observations of both state and mode. The aim of this paper is to show how to design such a feedback control to stabilise a given hybrid SDE.
Stabilisation of Hybrid Stochastic Differential Equations by Feedback Control based on Discrete-time Observations of State and Mode