2014
DOI: 10.3906/elk-1212-149
|View full text |Cite
|
Sign up to set email alerts
|

Sliding mode controller design with fractional order differentiation: applications for unstable time delay systems

Abstract: This paper presents a design method for a sliding mode controller with the contribution of a fractional order differential operator. The conventional sliding mode controller has been widely studied in different control applications. This paper proposes that the fractional order differential operator enlarges the output span of the classical sliding mode controller to obtain a better-fitting control signal for enhanced control performance. The sliding surface and the equivalent control law are modified with the… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
1
0
2

Year Published

2016
2016
2024
2024

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 12 publications
(3 citation statements)
references
References 27 publications
0
1
0
2
Order By: Relevance
“…The increase of fractional coefficient α reduces the effect of the (D α-1 (sig(e d ) γ )) integral term on the FOSMC sliding surface, and simultaneously increases the signal tracking error [65], and reduces the convergence time [69]. Similarly, due to the presence of model uncertainties and external disturbances, the fractional order sliding gains k d and k q are chosen to satisfy the reaching condition [79].…”
Section: A Steady State Performance and Fosmc Parameters Selectionmentioning
confidence: 99%
“…The increase of fractional coefficient α reduces the effect of the (D α-1 (sig(e d ) γ )) integral term on the FOSMC sliding surface, and simultaneously increases the signal tracking error [65], and reduces the convergence time [69]. Similarly, due to the presence of model uncertainties and external disturbances, the fractional order sliding gains k d and k q are chosen to satisfy the reaching condition [79].…”
Section: A Steady State Performance and Fosmc Parameters Selectionmentioning
confidence: 99%
“…Kesir dereceli integro-diferansiyel ifadelerin sistemleri daha iyi modellediği, denetleyici ve sistem tasarımına yeni bir bakış açısı getirmiştir [14]. [15].…”
Section: Introductionunclassified
“…Bilgisayar ile hesaplama yöntemlerinin gelişmesiyle birlikte, uzun yıllar yabancı kalınan kesir dereceli türev ve integral uygulamaları; kimya, biyomedikal, kontrol teorisi, elektronik, sinyal işleme gibi mühendisliğin birçok alanında ilgi çeken konular arasına girmiştir. Kesir dereceli integro-diferansiyel ifadelerin sistemleri daha iyi modellediği, denetleyici ve sistem tasarımına yeni bir bakış açısı getirmiştir [14]. [16], [17].…”
Section: Introductionunclassified