In the present article, we intend to study quasi-analytically the unsteady three-dimensional squeezed flow of the magnetite–graphene oxide/water hybrid nanofluid inside a rotating channel with two horizontal and parallel sheets, in which the lower sheet is stationary, stretchable, and permeable, while the upper sheet is moving and impermeable. Our methodology is based on the single-phase Tiwari–Das hybrid nanofluid model considering nanoparticles and base fluid masses instead volume concentration of first and second nanoparticles. The dimensional partial differential equations are altered to a set of nondimensional ordinary differential equations with the help of similarity transformation method, which is then solved numerically using the bvp4c function from MATLAB. The governing similarity parameters are the empirical shape factor of nanoparticles, the suction parameter, the squeezing parameter, the rotation parameter, the Eckert number, and the Prandtl number. Results indicate that when the upper sheet faster moves toward the lower sheet, the profiles trend is opposite in comparison with when the upper sheet faster moves away from the lower one. On the one hand, the drastic thermal conductivity of the graphene oxide is a major reason to achieve maximum heat transfer rate enhancement of our working fluid. Finally, this study may be applicable in biomechanics, flow through arteries, food processing, polymer processing, lubrication, injection modeling, etc.