Through examination of the scaling relations of faults and the use of seismic stratigraphic techniques, we demonstrate how the temporal and spatial evolution of the fault population in a half-graben basin can be accurately reconstructed. The basin bounded by the >>62 km long Strathspey-Brent-Statfjord fault array is located on the western flank of the Late Jurassic age northern North Sea rift basin. Alongstrike displacement variations, transverse fault-displacement folds and palaeo-fault tips abandoned in the hangingwall all provide evidence that the fault system comprises a hierarchy of linked palaeo-segments. The displacement variations developed while the fault was in a pre-linkage, multi-segment stage of its growth have not been equilibrated following fault linkage. Using the stratal architecture of syn-rift sediments, we date the main phase of segment linkage as latest Callovian -Middle Oxfordian (10-14 M.yr. after rift initiation). A dense sub-population of faults is mapped in the hangingwall to the Strathspey-Brent-Statfjord fault array. The majority of these faults are short, of low displacement and became inactive within 3-4 M.yr. of the beginning of the extensional event. Subsequently, only the segments of the proto-Strathspey-Brent-Statfjord fault and a conjugate array of antithetic faults located 3.5 km basinward continued to grow to define a graben-like basin geometry. Faults of the antithetic array became inactive approximately 11.5 M.yr. into the rift event, concentrating strain on the linked Strathspey-Brent-Statfjord fault; hence, the basin evolved into a half-graben. As the rift event progressed, strain was localised on a smaller number of active structures with increased rates of displacement. The results of this study suggest that a simple model for the linkage of 2-3 fault segments may not be applicable to a complex multi-segment array.